Process Fermentation of wine (part 2)
Posted by
Chemical GoBlog
Labels:
#process
Upon the introduction of active yeasts to the grape must, phosphates are attached to the sugar and the six-carbon sugar molecules begin to be split into three-carbon pieces and go through a series of rearrangement reactions. During this process the carboxylic carbon atom is released in the form of carbon dioxide with the remaining components becoming acetaldehyde. The absence of oxygen in this anaerobic process allows the acetaldehyde to be eventually converted, by reduction, to ethanol. During the conversion of acetaldehyde a small amount is converted, by oxidation, to acetic acid which, in excess, can contribute to the wine fault known as volatile acidity (vinegar taint). After the yeast has exhausted its life cycle they fall to the bottom of the fermentation tank as sediment known as lees.
Other compounds involved
The metabolism of amino acids and breakdown of sugars by yeasts has the affect of creating other biochemical compounds that can contribute to the flavor and aroma of wine. These compounds can be considered "volatile" like aldehydes, ethyl acetate, ester, fatty acids, fusel oils, hydrogen sulfide, ketones and mercaptans) or "non-volatile" like glycerol, acetic acid and succinic acid. Yeast also has the effect during fermentation of releasing glycoside hydrolase which can hydrolyse the flavor precursors of aliphatics (a flavor component that reacts with oak), benzene derivities, monoterpenes (responsible for floral aromas from grapes like Muscat and Traminer), norisoprenoids (responsible for some of the spice notes in Chardonnay), and phenols. Some strains of yeasts can generate volatile thiols which contribute to the fruity aromas in many wines such as the gooseberry scent commonly associates with Sauvignon blanc. Brettanomyces yeasts are responsible for the "barnyard aroma" characteristic in some red wines like Burgundy Pinot noir.
Other compounds involved
The metabolism of amino acids and breakdown of sugars by yeasts has the affect of creating other biochemical compounds that can contribute to the flavor and aroma of wine. These compounds can be considered "volatile" like aldehydes, ethyl acetate, ester, fatty acids, fusel oils, hydrogen sulfide, ketones and mercaptans) or "non-volatile" like glycerol, acetic acid and succinic acid. Yeast also has the effect during fermentation of releasing glycoside hydrolase which can hydrolyse the flavor precursors of aliphatics (a flavor component that reacts with oak), benzene derivities, monoterpenes (responsible for floral aromas from grapes like Muscat and Traminer), norisoprenoids (responsible for some of the spice notes in Chardonnay), and phenols. Some strains of yeasts can generate volatile thiols which contribute to the fruity aromas in many wines such as the gooseberry scent commonly associates with Sauvignon blanc. Brettanomyces yeasts are responsible for the "barnyard aroma" characteristic in some red wines like Burgundy Pinot noir.









