Polymer (part 3)
Posted by
Chemical GoBlog
Labels:
#reaction

Tensile strength
The tensile strength of a material quantifies how much stress the material will endure before failing. This is very important in applications that rely upon a polymer's physical strength or durability. For example, a rubber band with a higher tensile strength will hold a greater weight before snapping. In general tensile strength increases with polymer chain length.
Young's modulus of elasticity
Young's Modulus quantifies the elasticity of the polymer. It is defined, for small strains, as the ratio of rate of change of stress to strain. Like tensile strength, this is highly relevant in polymer applications involving the physical properties of polymers, such as rubber bands. The modulus is strongly dependent on temperature.
Transport properties
Transport properties such as diffusivity relate to how rapidly molecules move through the polymer matrix. These are very important in many applications of polymers for films and membranes.
Melting point
The term melting point, when applied to polymers, suggests not a solid-liquid phase transition but a transition from a crystalline or semi-crystalline phase to a solid amorphous phase. Though abbreviated as simply Tm, the property in question is more properly called the crystalline melting temperature. Among synthetic polymers, crystalline melting is only discussed with regards to thermoplastics, as thermosetting polymers will decompose at high temperatures rather than melt.
Boiling point
The boiling point of a polymer substance is never defined because polymers will decompose before reaching theoretical boiling temperatures.









