The Manufacturing Of Sulfuric acid 2
Posted by
Chemical GoBlog
Labels:
#manufakturing
Sulfuric acid is produced from sulfur, oxygen and water via the contact process.
In the first step, sulfur is burned to produce sulfur dioxide.
(1) S(s) + O2(g) → SO2(g)
This is then oxidized to sulfur trioxide using oxygen in the presence of a vanadium(V) oxide catalyst.
(2) 2 SO2 + O2(g) → 2 SO3(g) (in presence of V2O5)
Finally the sulfur trioxide is treated with water (usually as 97-98% H2SO4 containing 2-3% water) to produce 98-99% sulfuric acid.
(3) SO3(g) + H2O(l) → H2SO4(l)
Note that directly dissolving SO3 in water is not practical due to the highly exothermic nature of the reaction, forming a corrosive mist instead of a liquid. Alternatively, SO3 can be absorbed into H2SO4 to produce oleum (H2S2O7), which may then be mixed with water to form sulfuric acid.
(3) H2SO4(l) + SO3 → H2S2O7(l)
Oleum is reacted with water to form concentrated H2SO4.
(4) H2S2O7(l) + H2O(l) → 2 H2SO4(l)
Read more.....
In the first step, sulfur is burned to produce sulfur dioxide.
(1) S(s) + O2(g) → SO2(g)
This is then oxidized to sulfur trioxide using oxygen in the presence of a vanadium(V) oxide catalyst.
(2) 2 SO2 + O2(g) → 2 SO3(g) (in presence of V2O5)
Finally the sulfur trioxide is treated with water (usually as 97-98% H2SO4 containing 2-3% water) to produce 98-99% sulfuric acid.
(3) SO3(g) + H2O(l) → H2SO4(l)
Note that directly dissolving SO3 in water is not practical due to the highly exothermic nature of the reaction, forming a corrosive mist instead of a liquid. Alternatively, SO3 can be absorbed into H2SO4 to produce oleum (H2S2O7), which may then be mixed with water to form sulfuric acid.
(3) H2SO4(l) + SO3 → H2S2O7(l)
Oleum is reacted with water to form concentrated H2SO4.
(4) H2S2O7(l) + H2O(l) → 2 H2SO4(l)
15.00 |
The Manufacturing Of Aspirin
Posted by
Chemical GoBlog
Labels:
#manufakturing
Aspirin (acetylsalicylic acid) is by far the most common type of analgesic, an important class of compounds that relieve pain, and it also lowers abnormally high body temperatures. Aspirin also finds use in reducing inflammation caused by rheumatic fever and rheumatoid arthritis. The manufacture of aspirin is based on the synthesis of salicylic acid from phenol. Reaction of carbon dioxide with sodium phenoxide is an electrophilic aromatic substitution on the ortho, para-directing phenoxy ring. The ortho isomer is steam distilled away from the para isomer. C6H5OH + CO2 → HOC6H4CO2H Salicylic acid reacts easily with acetic anhydride to give aspirin. HOC6H4CO2H + (CH3CO)2O → CH3OCOC6H4CO2H + CH3CO2H In this process, a 500-gallon glass-lined reactor is needed to heat the salicylic acid and acetic anhydride for 2 to 3 hours. The mixture is transferred to a crystallizing kettle and cooled to 3oC. Centrifuging and drying of the crystals yields the bulk aspirin. The excess solution is stored and the acetic acid is recovered to make more acetic anhydride. The irritation of the stomach lining caused by aspirin can be alleviated with the use of mild bases such as sodium bicarbonate, aluminum glycinate, sodium citrate, aluminum hydroxide, or magnesium trisilicate (a trademark for this type of aspirin is Bufferin®). Both phenacetin and the newer replacement acetaminophen are derivatives of p-aminophenol. Although these latter two are analgesics and antipyretics, the aniline-phenol derivatives show little if any anti-inflammatory activity. p-Aminophenol itself is toxic, but acylation of the amino group makes it a convenient drug. A trademark for acetaminophen is Tylenol®. Excedrin® is acetaminophen, aspirin, and caffeine. Acetaminophen is easily synthesized from phenol.
Read more.....
15.00 |
The Manufacturing Of Acetone
Posted by
Chemical GoBlog
Labels:
#manufakturing
Acetone (dimethyl ketone, 2-propanone, CH3COCH3, melting point: –94.6oC, boiling point: 56.3oC, density: 0.783) is the simplest ketone and is a colorless liquid that is miscible in all proportions with water, alcohol, or ether. There are two major processes for the production of acetone (2-propanone). The feedstock for these is either iso-propyl alcohol [(CH3)2CHOH] or cumene [iso-propyl benzene, C6H5CH(CH3)2]. In the last few years there has been a steady trend away from iso-propyl alcohol and toward cumene, but iso-propyl alcohol should continue as a precursor since manufacture of acetone from only cumene would require a balancing of the market with the coproduct phenol from this process. Acetone is made from iso-propyl alcohol by either dehydrogenation (preferred) or air oxidation. These are catalytic processes at 500oC and 40 to 50 psi. The acetone is purified by distillation, boiling point 56oC and the conversion per pass is 70 to 85 percent, with the overall yield being in excess of 90 percent.
CH3CH(OH)CH3 → CH3C(=O)CH3 + H2 .2CH3CH(OH)
CH3 + O2 → CH3C(=O)CH3 + 2H2O
Cumene is also used as a feedstock for the production of acetone. In this process, cumene first is oxidized to cumene hydroperoxide followed by the decomposition of the cumene hydroperoxide into acetone and phenol. The hydroperoxide is made by reaction of cumene with oxygen at 110 to 115oC until 20 to 25 percent of the hydroperoxide is formed. Concentration of the hydroperoxide to 80% is followed by catalyzed rearrangement under moderate pressure at 70 to 100oC. During the reaction, the palladium chloride (PdCl2) catalyst is reduced to elemental palladium to produce hydrogen chloride that catalyzes the rearrangement, and reoxidation of the palladium is brought about by use of cupric chloride (CuCl2) that is converted to cuprous chloride (CuCl). The cuprous chloride is reoxidized during the catalyst regeneration cycle.The overall yield is 90 to 92 percent. By-products are acetophenone, 2-phenylpropan-2-ol, and α-methylstyrene. Acetone is distilled first at boiling point 56oC.
Vacuum distillation recovers the unreacted cumene and yields α−methylstyrene, which can be hydrogenated back to cumene and recycled. Further distillation separates phenol, boiling point 181oC, and acetophenone, boiling point 202oC.
In older industrial processes, acetone is prepared (1) by passing the vapors of acetic acid over heated lime. Calcium acetate is produced in the first step followed by a breakdown of the acetate into acetone and calcium carbonate:
CH3CO2H + CaO → (CH3CO2)2Ca + H2O (CH3CO2)2
Ca → CH3COCH3 + CaCO3
and (2) by fermentation of starches, such as maize, which produce acetone along with butyl alcohol. Acetone is a very important solvent and is widely used in the manufacture of plastics and lacquers. For storage purposes, acetone may be used as a solvent for acetylene. Acetone is the starting ingredient or intermediate for numerous organic syntheses. Closely related, industrially important compounds are diacetone alcohol [CH3COCH2COH(CH3)2], which is used as a solvent for cellulose acetate and nitrocellulose, as well as for various resins and gums, and as a thinner for lacquers and inking materials. Acetone is used for the production of methyl methacrylate, solvents, bisphenol A, aldol chemicals, and pharmaceuticals. Methyl methacrylate is manufactured and then polymerized to poly(methyl methacrylate), an important plastic known for its clarity and used as a glass substitute.
Aldol chemicals refer to a variety of substances desired from acetone involving an aldol condensation in a portion of their synthesis. The most important of these chemicals is methyl iso-butyl ketone (MIBK), a common solvent for many plastics, pesticides, adhesives, and pharmaceuticals. Bisphenol A is manufactured by a reaction between phenol and acetone, the two products from the cumene hydroperoxide rearrangement. Bisphenol A is an important diol monomer used in the synthesis of polycarbonates and epoxy resins. A product known as synthetic methyl acetone is prepared by mixing acetone (50%), methyl acetate (30%), and methyl alcohol (20%) and is used widely for coagulating latex and in paint removers and lacquers.
Read more.....
CH3CH(OH)CH3 → CH3C(=O)CH3 + H2 .2CH3CH(OH)
CH3 + O2 → CH3C(=O)CH3 + 2H2O
Cumene is also used as a feedstock for the production of acetone. In this process, cumene first is oxidized to cumene hydroperoxide followed by the decomposition of the cumene hydroperoxide into acetone and phenol. The hydroperoxide is made by reaction of cumene with oxygen at 110 to 115oC until 20 to 25 percent of the hydroperoxide is formed. Concentration of the hydroperoxide to 80% is followed by catalyzed rearrangement under moderate pressure at 70 to 100oC. During the reaction, the palladium chloride (PdCl2) catalyst is reduced to elemental palladium to produce hydrogen chloride that catalyzes the rearrangement, and reoxidation of the palladium is brought about by use of cupric chloride (CuCl2) that is converted to cuprous chloride (CuCl). The cuprous chloride is reoxidized during the catalyst regeneration cycle.The overall yield is 90 to 92 percent. By-products are acetophenone, 2-phenylpropan-2-ol, and α-methylstyrene. Acetone is distilled first at boiling point 56oC.
Vacuum distillation recovers the unreacted cumene and yields α−methylstyrene, which can be hydrogenated back to cumene and recycled. Further distillation separates phenol, boiling point 181oC, and acetophenone, boiling point 202oC.
In older industrial processes, acetone is prepared (1) by passing the vapors of acetic acid over heated lime. Calcium acetate is produced in the first step followed by a breakdown of the acetate into acetone and calcium carbonate:
CH3CO2H + CaO → (CH3CO2)2Ca + H2O (CH3CO2)2
Ca → CH3COCH3 + CaCO3
and (2) by fermentation of starches, such as maize, which produce acetone along with butyl alcohol. Acetone is a very important solvent and is widely used in the manufacture of plastics and lacquers. For storage purposes, acetone may be used as a solvent for acetylene. Acetone is the starting ingredient or intermediate for numerous organic syntheses. Closely related, industrially important compounds are diacetone alcohol [CH3COCH2COH(CH3)2], which is used as a solvent for cellulose acetate and nitrocellulose, as well as for various resins and gums, and as a thinner for lacquers and inking materials. Acetone is used for the production of methyl methacrylate, solvents, bisphenol A, aldol chemicals, and pharmaceuticals. Methyl methacrylate is manufactured and then polymerized to poly(methyl methacrylate), an important plastic known for its clarity and used as a glass substitute.
Aldol chemicals refer to a variety of substances desired from acetone involving an aldol condensation in a portion of their synthesis. The most important of these chemicals is methyl iso-butyl ketone (MIBK), a common solvent for many plastics, pesticides, adhesives, and pharmaceuticals. Bisphenol A is manufactured by a reaction between phenol and acetone, the two products from the cumene hydroperoxide rearrangement. Bisphenol A is an important diol monomer used in the synthesis of polycarbonates and epoxy resins. A product known as synthetic methyl acetone is prepared by mixing acetone (50%), methyl acetate (30%), and methyl alcohol (20%) and is used widely for coagulating latex and in paint removers and lacquers.
15.00 |
Langganan:
Postingan (Atom)